

Pulse + Bus Motion Controller

XPLC108E

Motion Controller

Motion Control Card

10 Expansion Module

НМІ

Foreword

Zmotion[®]

The motion controller provides rich interface, and it has excellent motion control performance, which can meet the expansion requirements of various projects.

This manual is copyrighted by Shenzhen Technology Co., Ltd., without the written permission of the Zmotion Technology, no person shall reproduce, translate and copy any content in this manual. The above-mentioned actions will constitute an infringement of the copyright of the company's manual, and Zmotion will investigate legal responsibility according to law.

For details about the ZMC controller software and the introduction and routine of each command, please refer to the ZBASIC software manual.

Information contained in this manual is only for reference. Due to improvements in design and functions and other aspects, Zmotion Technology reserves the final interpretation! Subject to change without notice!

Pay attention to safety when debugging the machine!

Please be sure to design an effective safety protection device in the machine, and add an error handling program in the software, otherwise Zmotion has no obligation or responsibility for the loss caused.

In order to ensure the safe, normal and effective use of the product, please be sure to read this product manual carefully before installing and using the product.

Safety Statement

- This chapter describes the safety precautions required for the correct use of this product. Before
 using this product, please read the instructions for use and correctly understand the relevant
 information on safety precautions.
- This product should be used in an environment that meets the design specifications, otherwise
 it may cause equipment damage or personal injury, and malfunctions or component damage
 caused by failure to comply with relevant regulations are not within the scope of product quality
 assurance.
- Zmotion will not take any legal responsibility for personal safety accidents and property losses caused by failure to comply with the contents of this manual or illegal operation of products.

Safety Level Definition

According to the level, it can be divided into "Danger" and "Caution". Failure to operate as required may result in moderate injury, minor injury or equipment damage.

Please keep this guide in a safe place for reading when needed, and be sure to hand this manual to the end user.

Install

Danger

- When the controller is disassembled, all external power supplies used by the system should be disconnected before operation, otherwise it may cause misoperation or damage to the equipment.
- It is forbidden to use in the following places: places with dust, oil fume, conductive dust, corrosive gas and flammable gas; places exposed to high temperature, condensation, wind and rain; places with vibration and shock. Electric shock, fire and misuse can cause product damage and deterioration.

Notice

- Avoid metal shavings and wire ends falling into the hardware circuit board during installation.
- ◆ After installation, ensure that there are no foreign objects on the hardware circuit board.
- When installing, make it tightly and firmly with the mounting frame.

• Improper installation of the controller may result in misoperation, failure and fire.

Wiring

The specifications and installation methods of the external wiring of the equipment shall comply with the requirements of local power distribution regulations.

- Danger
- When wiring, all external power supplies used by the system should be disconnected before operation.
- When powering on and running after the wiring work is completed, the terminals attached to the product must be installed.
- Cable terminals should be well insulated to ensure that the insulation distance between cables will not be reduced after the cables are installed on the terminal block.
- Avoid metal shavings and wire ends falling into the hardware circuit board during installation.
- ◆ The cable connection should be carried out correctly on the basis of confirming the type of the connected interface.

- Notice
- It should be confirmed that the cables pressed into the terminals are in good contact.
- Do not bundle the control wires and communication cables with the main circuit or power supply wires, etc., and the distance between the wires should be more than 100 mm, otherwise noise may cause malfunction.
- ◆ If the controller is not installed properly, it may cause electric shock or equipment failure or malfunction.

Content

Cha	apter	ΙP	roduct	tion Information	3
	1.1.		Produ	ct Information	3
	1.2.		Functi	ion Features	3
	1.3.		Syster	m Frame	4
	1.4.		Hardw	vare Installment	4
Cha	apter	II F	Produc	t Specification	7
	2.1.		Basic	Specification	7
	2.2.		Order	Information	7
	2.3.		Interfa	ace Definition	8
	2.4.		Work I	Environment	9
Cha	apter	Ш	Wiring	, Communication Configuration	.11
	3.1.		Power	Input, CAN Communication Interface	.11
		3.	1.1.	Power Specification	.12
		3.	1.2.	CAN Communication Specification & Wiring	.12
		3.	1.3.	Basic Usage Method	.14
	3.2.		RS485	5 Serial Port	.15
		3.	2.1.	RS485, CAN Communication Specification & Wiring	.15
		3.	2.2.	Basic Usage Method	.17
	3.3.		RS232	2 Serial Port	.18
		3.	3.1.	RS232 Communication Interface Specification & Wiring	.18
		3.	3.2.	Basic Usage Method	.19
	3.4.		IN Dig	ital Input & Latch & Single-ended Encoder	.20
		3.	4.1.	Digital Input Specification & Wiring	.22
		3.	4.2.	Basic Usage Method	.23
	3.5.		OUT D	Digital Output	.24
		3.	5.1.	Digital Output Specification & Wiring	.25

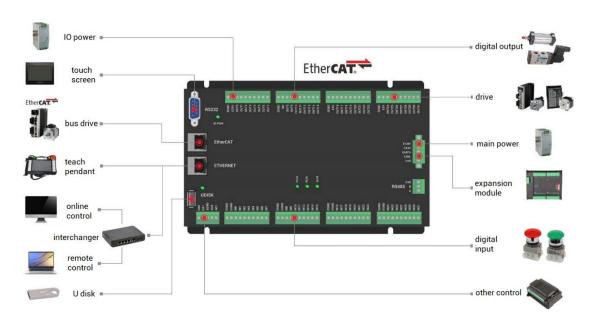
		3.5.2.	Basic Usage Method	27
	3.6.	AD/D	A Analog Input / Output	27
		3.6.1.	Analog Input / Output Specification & Wiring	28
		3.6.2.	Basic Usage Method	29
	3.7.	ETHE	RNET	29
	3.8.	Ether(CAT Bus Interface	31
Cha	pter	IV Expan	sion Module	34
	4.1.	CAN E	Bus Expansion	34
		4.1.1.	CAN Bus Expansion Wiring	34
		4.1.2.	CAN Bus Expansion Resource Mapping	36
	4.2.	Ether(CAT Bus Expansion	40
		4.2.1.	EtherCAT Bus Expansion Wiring	40
		4.2.2.	EtherCAT Bus Expansion Resource Mapping	41
Cha	pter	V Progra	m & Applications	44
	5.1.	ZDeve	elop Software Usage	44
	5.2.	PC Up	pper-Computer Program Application	49
Cha	pter	VI Run a	nd Maintain	52
	6.1.	Regul	ar Inspection and Maintenance	52
	6.2.	Comn	non Problems	53

Chapter I Production Information

1.1. Product Information

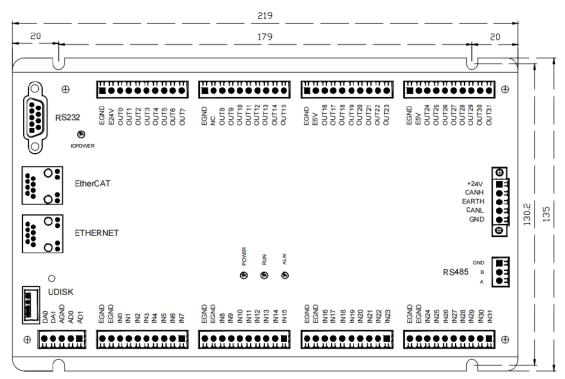
XPLC108E is a kind of economical multi-axis motion controller that integrates Basic, PLC and HMI programming methods.

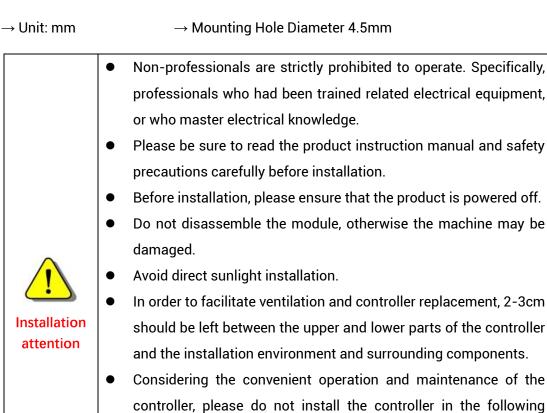
XPLC108E economical multi-axis motion controller is a kind of standalone motion controller that is compatible with EtherCAT bus and pulse type, and itself supports 8 axes motion control, but 12 axes can be expanded to achieve some control requirements, such as point to point, linear motion, electronica cam, etc.


XPLC108E economical multi-axis motion controllers can be applied in electronic semiconductor equipment (testing equipment, assembly equipment, locking equipment, soldering machine), dispensing equipment, non-standard equipment, printing and packaging equipment, textile and garment equipment, stage entertainment equipment, medical equipment, assembly line, etc.

1.2. Function Features

- 8-12 axes motion control.
- The fastest period of EtherCAT bus is 1ms.
- Pulse output mode: directional/pulse or dual pulse.
- Support encoder position measurement, which can be configured as handwheel input mode.
- ◆ The max output pulse frequency of each axis can reach 500kHz.
- ◆ IO can be expanded through ZCAN and EtherCAT, and 512 isolated inputs and 512 isolated outputs can be extended at most.


- ◆ Axis position limit signal / origin signal port can be configured as any input at will.
- The maximum output current of general digital outputs can reach 500mA, which can directly drive some kinds of solenoid valves.
- ◆ Interfaces: EtherCAT, RS232, RS485, Ethernet.
- Support 12 axes linear interpolation.
- Support electronic cam, electronic gear, position latch, synchronous follow, virtual axis, and other functions.
- Support multi-file and multi-task programming in ZBasic.
- A variety of program encryption methods to protect the intellectual property rights of customers.


1.3. System Frame

1.4. Hardware Installment

The XPLC108E motion controller is installed horizontally with screws, and each controller should be fastened with 4 screws.

places where the surrounding ambient temperature exceeds

places where the ambient humidity exceeds the range of 10%-

places:

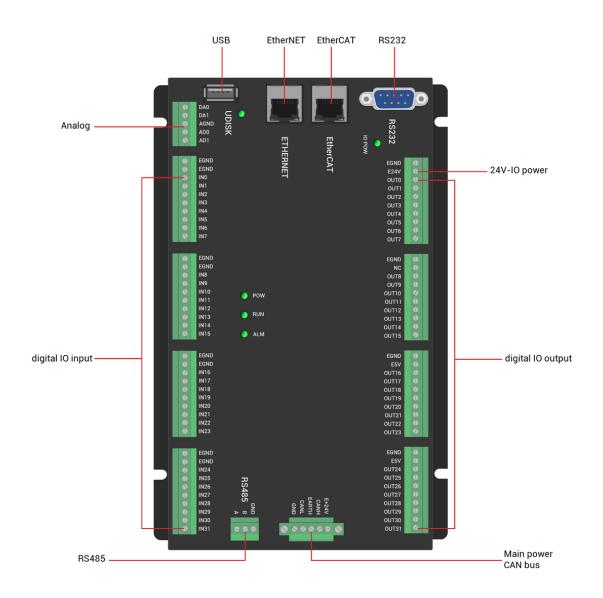
the range of -10°C-55°C

95% (non-condensing)

- c) places with corrosive gases and flammable gases
- d) places with many conductive powders such as dust and iron powder, oil mist, salt, and organic solvents

Chapter II Product Specification

2.1. Basic Specification


Item	Description		
Model	XPLC108E	XPLC106E	
Basic Axes	8	6	
Max Extended Axes	12		
Type of Basic Axes	EtherCAT bus axes/pulse ax	es/encoder axis	
Digital IO	There are 32 inputs and 32 o	outputs.	
Max Extended IO	512 inputs, 512 outputs		
AD/DA	2 general DAs, 2 general DA	s, 0-10V	
Max Extended AD/DA	128 ADs, 64 DAs		
Pulse Bit	32		
Encoder Bit	32		
Speed and Acceleration Bit	32		
Max Pulse Frequency	500kHz		
Motion Buffer of Each Axis	512		
Array Space	320000		
Program Space	2MByte		
Flash Space	6MByte		
Power Supply Input	24V DC main power input, 24V DC IO power input		
Communication Interfaces	RS232, RS485, Ethernet, CAN, EtherCAT		
Dimensions	219*135mm		

2.2. Order Information

Model	Description
XPLC106E	6 axes EtherCAT control, it doesn't support circular interpolation,

	helical interpolation, and continuous interpolation.
VDI 0100F	8 axes EtherCAT control, it doesn't support circular interpolation,
XPLC108E	helical interpolation, and continuous interpolation.

2.3. Interface Definition

→ Interface Description

Mark	Interface	Number	Description	
IO POWER	The led that indicates the	1	IO power state: it lights when IO power is conducted.	
POWER	current state.	1	Power state: it lights when power is	

ı			
			conducted.
RUN		1	Run state: it lights when runs normally
ALM		1	Error state: it lights when runs incorrectly
RS232	RS232 serial port (port0)	1	Use MODBUS_RTU protocol
RS485	RS485 serial port (port1)	1	Use MODBUS_RTU protocol
			EtherCAT bus interface, connect to EtherCAT
EtherCAT	EtherCAT bus interface	1	bus drive and EtherCAT bus expansion
			module
			Use MODBUS_TCP protocol, expand the
			number of network ports through the
ETHERNET	Network port	1	interchanger, and the number of net port
			channels can be checked through "?*port"
			command, default IP address is 192.168.0.11
+24V	Main power supply	1	24V DC power, it supplies the power for
T24V	Main power suppry	ı	controller.
CAN	CAN bus interface	1	Connect CAN expansion modules and CAN
CAN	CAN bus interface	ı	equipment of other standards.
			NPN leakage type, power is supplied by IO
IN	Digital IO input port	32	24V power. IN0-1 have the latch function,
			IN26-31 can be configured as 24V encoder.
			NPN leakage type, power is supplied by IO
OUT	Digital IO output port	32	24V power. OUT16-31 can be configured as
			pulse axes.
AD	Analog input port	2	12-bit resolution, 0-10V.
DA	Analog output port	2	12-bit resolution, 0-10V.

2.4. Work Environment

Item	Parameters	
Work Temperature	-10℃-55℃	
Work relative Humidity	10%-95% non-condensing	
Storage Temperature	-40°C ~80°C (not frozen)	
Storage Humidity	Below 90%RH (no frost)	

	Frequency	5-150Hz	
vibration	Displacement	3.5mm(directly install)(<9Hz)	
Vibration	Acceleration	1g(directly install)(>9Hz)	
	Direction	3 axial direction	
Shoo	ck (collide)	15g, 11ms, half sinusoid, 3 axial direction	
Degree	of Protection	IP20	

Chapter III Wiring, Communication Configuration

3.1. Power Input, CAN Communication Interface

The power supply input adopts a 5Pin (there are all 5 terminals) screw-type pluggable wiring terminal, and the interval (means the gap distance between two ports) should be 3.81mm. This terminal is the power supply of the controller, and it is shared with CAN communication at the same time.

→ Main Power Terminal Definition:

Teri	minal	Name	Туре	Function
+24V	•	+24V	Input	Power 24V input
CANH		CANH	Input/output	CAN differential data +
EARTH		EARTH	Grounding	Shield
CANL		CANL	Input/output	CAN differential data -
GND		GND	Input	Power ground

Note: please supply internal 24V power and external 24V IO power separately, it is not recommended to use one same power supply, or use one power that provides 2 isolated 24V.

→ IO Power Terminal Definition:

Terminal	Name	Туре	Function
EGND ()	EGND	Input	IO power ground
E24V	E24V	Input	Power 24V input

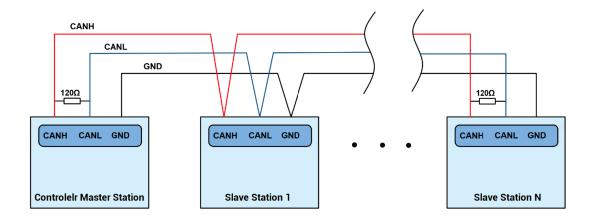
Note: please supply internal 24V power and external 24V IO power separately, it is not recommended to use one same power supply, or use one power that provides 2 isolated 24V.

3.1.1. Power Specification

→ Specification

Item	Main Power	IO Power
Voltage	DC24V(-5%~5%)	DC24V(-5%~5%)
The current to open	≤0.5A	≤0.15A
The current to work	≤0.4A	≤0.1A
Anti-reverse connection	Valid	Valid
Overcurrent Protection	Valid	Valid

3.1.2. CAN Communication Specification & Wiring

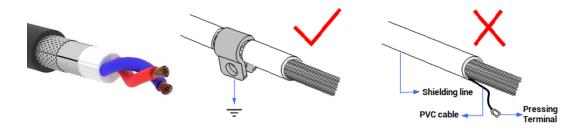

The CAN interface of the controller adopts the standard CAN communication protocol, which mainly includes three ports, CANL, CANH and the public end. And it can connect CAN expansion modules and other standard CAN devices.

\rightarrow Specification

Item	CAN
Maximum Communication Rate (bps)	1M
Terminal Resistor	120Ω
Topological Structure	Daisy Chain Topology
The number of nodes can be extended	Up to 16
	The longer communication distance is, the
Communication Distance	lower communication rate is, and
	maximum of 100m is recommended.

$\rightarrow \text{Wiring Reference}$

Connect the CANL and CANH of the standard CAN module to the CANL and CANH of the other side correspondingly. And public ends of the CAN bus communication both parties are connected together. In CAN bus left and right sides, connect a 120Ω resistor respectively (please see below graphic).



→ Wiring Notes:

- As above, the daisy chain topology is used for wiring (the star topology structure cannot be used). When the use environment is ideal and there are no many nodes, the branch structure also can be used.
- Please connect a 120Ω terminal resistor in parallel to each end of the CAN bus for matching the circuit impedance and ensuring communication stability.
- Please be sure to connect the public ends of each node on the CAN bus to prevent the CAN chip from burning out.
- Please use STP (Shielded Twisted Pair), especially in bad environments, and make sure the shielding layer is fully grounded.
- When on-site wiring, pay attention to make the distance between strong current and weak current, it is recommended for the distance to be more than 20cm.
- It should be noted that the equipment grounding (chassis) on the entire line must be good, and the grounding of the chassis should be connected to the standard factory ground pile.

→ Cable Requirements:

Shielded Twisted Pair, and the shielded cable is grounded.

3.1.3. Basic Usage Method

- (1) Please follow the above wiring instructions to wiring correctly.
- (2) After powered on, please use ETHERNET or RS232 to connect to ZDevelop.
- (3) Please use the "CANIO_ADDRESS" command to set the master's "address" and "speed" according to the needs, and use the "CANIO_ENABLE" command to enable or disable the internal CAN master function, or through "ZDevelop/Controller/State the Controller/Communication Info" to view the CAN status intuitively, and refer to the "ZBasic Programming Manual" for details.

CAN communication settings: CANIO_ADDRESS = 32, CANIO_ENABLE = 1 ZCAN Master CAN baud: 500KBPS CAN enable: ON Serial port configuration: Port0:(RS232) is ModbusSlave Mode. Address: 1, variable: 2 Baud:38400 DataBits:8 StopBits: 1 Port1: (RS485) is ModbusSlave Mode. Address:1, variable:2 Baud:38400 DataBits:8 StopBits: 1

(4) Correctly set the "address" and "speed" of the slave station expansion module according to the manual of the slave station.

- (5) After all the settings are completed, restart the power supply of all stations to establish communication.
- (6) Note that the "speed" settings of each node on the CAN bus must be consistent, and the "address" settings cannot cause conflicts, otherwise the "ALM" alarm light will be on, and the communication establishment will fail or the communication will be disordered.

3.2. RS485 Serial Port

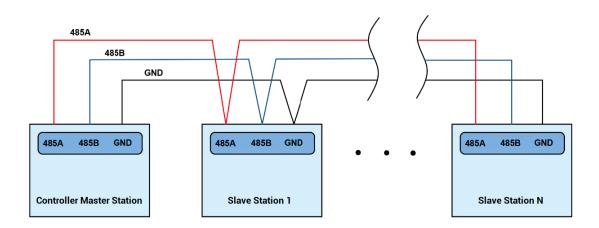
The communication interface adopts a 5Pin (there are all 5 terminals) screw-type pluggable wiring terminal, and the interval (means the gap distance between two ports) should be 3.81mm. RS485 communication and CAN communication can be achieved through connecting to corresponding interfaces of this terminal.

→ Terminal Definition:

Terr	Terminal Name		Function
GND	•	GND	485 communication public end
В	0	А	485+
Α	0	В	485-

3.2.1. RS485, CAN Communication Specification & Wiring

The RS485 serial port supports the MODBUS_RTU protocol and custom communication, mainly including 485A, 485B and public end.

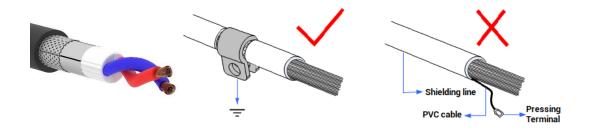

\rightarrow Specification

Item	RS485
Maximum Communication Rate (bps)	115200
Terminal Resistor	No
Topological Structure	Daisy Chain Topology

The number of nodes can be extended	Up to 127
	The longer communication distance is, the
Communication Distance	lower communication rate is, and
	maximum of 100m is recommended.

→ Wiring Reference

Connect 485A and 485B of RS485 to 485A and 485B of the controller correspondingly, and connect the public ends "EGND" of RS485 communication parties together.



→ Wiring Notes:

- As above, the daisy chain topology is used for wiring (the star topology structure cannot be used). When the use environment is ideal and there are no many nodes, the branch structure also can be used.
- Please use STP (Shielded Twisted Pair), especially in bad environments, and make sure the shielding layer is fully grounded.
- When on-site wiring, pay attention to make the distance between strong current and weak current, it is recommended for the distance to be more than 20cm.
- It should be noted that the equipment grounding (chassis) on the entire line must be good, and the grounding of the chassis should be connected to the standard factory ground pile.

→ Cable Requirements:

Shielded Twisted Pair, and the shielded cable is grounded.

3.2.2. Basic Usage Method

- (1) Please follow the above wiring instructions to wiring correctly.
- (2) After powered on, please use ETHERNET or RS232 or RS485 to connect to ZDevelop.
- (3) Please use the "ADDRESS" and "SETCOM" commands to set and view the protocol station number and configured parameters, see "ZBasic Programming Manual" for details.

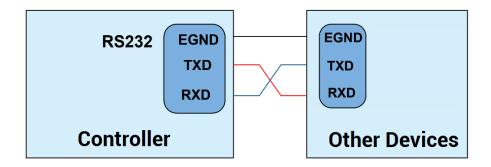
CAN communication settings: CANIO_ADDRESS = 32, CANIO_ENABLE = 1 ZCAN Master CAN baud: 500KBPS CAN enable: ON Serial port configuration: Port0: (RS232) is ModbusSlave Mode. Address: 1, variable: 2 delay: 400ms Baud: 38400 DataBits:8 StopBits: 1 Parity:0 Port1: (RS485) is ModbusSlave Mode. Address: 1, variable: 2 delay: 400ms Baud: 38400 DataBits:8 StopBits: 1 Parity:0

(4) Build the communication between controller according to Baud rate and other serial parameters.

3.3. RS232 Serial Port

RS232 is in one standard DB9 male socket and supports MODBUS_RTU protocol and custom communication.

→ Interface Definition:

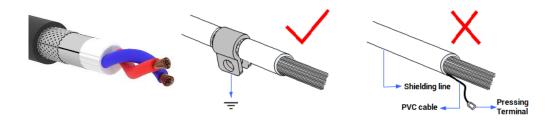

Terminal	PIN	Name	Туре	Function
	1、4、 6、7、8	NC	Spare	Reserved
	2	RXD	Input	RS232 signal, receive data
5 9	3	TXD	Output	RS232 signal, send data
	5	EGND	Output	Negative pole output of 5V power,
	5	EGND	Output	and output for the public end
	0			Positive pole output of 5V power,
	9	E5V	Output	maximum is 300mA

3.3.1. RS232 Communication Interface Specification & Wiring

$\rightarrow \textbf{Specification:}$

Item	RS232
Maximum Communication Rate (bps)	115200
Terminal Resistor	No
Topology Structure	Connect correspondingly (1 to 1)
The number of nodes can be extended	1
	The Longer communication distance is,
Communication Distance	the lower communication rate is,
	maximum 10m is recommended.

→ Wiring Reference:



→ Wiring Notes:

- The wiring of RS232 is as above, it needs to cross-wiring for sending and receiving signals, and it is recommended to use a double-female head cross line when connecting to a computer.
- Please be sure to connect the public ends of each communication node to prevent the communication chip from burning out.
- Please use STP, especially in bad environments, and make sure the shielding layer is fully grounded.

→ Cable Requirements:

Shielded Twisted Pair, and the shielded cable is grounded.

3.3.2. Basic Usage Method

- (1) Please follow the above wiring instructions to wiring correctly.
- (2) After powered on, please use any one interface among the three interfaces ETHERNET,

RS232 (there is default parameter, which can be connected directly) and RS485 (there is default parameter, which can be connected directly, but for hardware, adapter head is needed) to connect to ZDevelop.

- (3) Please use the "ADDRESS" and "SETCOM" commands to set and view the protocol station number and configured parameters, see "ZBasic Programming Manual" for details.
- (4) According to their respectively instructions, correctly set the relevant parameters of the third-party equipment to match the parameters of each node.
- (5) When all is configured, it can start to do communicating.
- (6) Communication data of RS232 / RS485 can be directly viewed through "ZDevelop / Controller / State the Controller / CommunicationInfo".

CAN communication settings: CANIO_ADDRESS = 32, CANIO_ENABLE = 1 ZCAN Master CAN baud: 500KBPS CAN enable: ON Serial port configuration: Port0:(RS232) is ModbusSlave Mode. Address: 1, variable: 2 delay: 400ms Baud: 38400 DataBits:8 StopBits: 1 Parity:0 Port1: (RS485) is ModbusSlave Mode. Address: 1, variable: 2 delay: 400ms Baud: 38400 DataBits:8 StopBits: 1 Parity:0

3.4. IN Digital Input & Latch & Single-ended Encoder

The digital input adopts 4 groups of 10Pin (there are 4 groups of 10 terminals) screwtype pluggable terminals, and the gap distance between terminals should be 3.81mm. And digital inputs can be configured as latch and single-ended encoder.

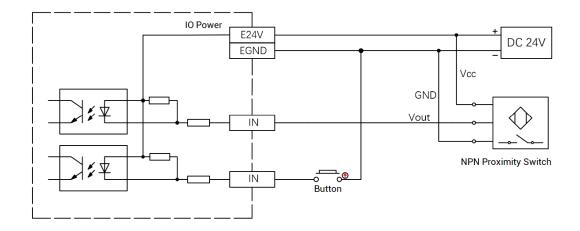
→ Terminal Definition

Term	inal	Name	Туре	Function 1	Function 2
• EGND		EGND	/	IO power ground /	/
	EGND	EGND	/	IO public end	/
	INO	IN0		Input 0	Latch A
	IN1	IN1		Input 1	Latch B
	IN2	IN2		Input 2	/
0	IN3	IN3	NPN type,	Input 3	/
	IN4	IN4	digital input	Input 4	/
0	IN5	IN5		Input 5	/
	IN6	IN6		Input 6	/
	IN7	IN7		Input 7	/
		EGND	/	IO power ground /	/
	EGND	EGND	/	IO public end	/
0	EGND IN8	IN8		Input 8	/
	IN9	IN9		Input 9	/
	IN10	IN10		Input 10	/
	IN11	IN11	NPN type,	Input 11	/
	IN12	IN12	digital input	Input 12	/
0	IN13	IN13		Input 13	/
	IN14 IN15	IN14		Input 14	/
	11413	IN15		Input 15	/
	EGND	EGND	/	IO power ground /	/
	EGND	EGND	/	IO public end	/
0	IN16	IN16		Input 16	/
0	IN17	IN17		Input 17	/
	IN18	IN18		Input 18	/
	IN19	IN19	NPN type,	Input 19	/
	IN20	IN20	digital input	Input 20	/
0 0 0	IN21	IN21	1	Input 21	/
	IN22	IN22	1	Input 22	/
	IN23	IN23]	Input 23	/
		EGND	/	IO power ground /	/
		EGND	/	IO public end	/
		IN24		Input 24	/
		IN25	NPN type,	Input 25	/
			digital input	Input 26	EZ1
		IN27		Input 27	EB1

0	EGND	IN28	Input 28	EA1
0	EGND	IN29	Input 29	EZ0
0	IN24	IN30	Input 30	EB0
•	IN25	IN31	Input 31	EA0
0	IN26			
0	IN27			
0	IN28			
0	IN29			
•	IN30			
0	IN31			

Note:

IN0-1 support latch A and latch B function, IN26-31 can be configured as 24V encoder. When ATYPY=0, they are general inputs (ordinary inputs).

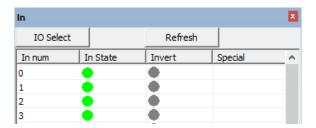

3.4.1. Digital Input Specification & Wiring

\rightarrow Specification

Item	Digital Input (IN0-31)
Input mode	NPN type, trigger input when in low electricity
Frequency	< 5kHz
Impedance	4.7ΚΩ
Voltage level	DC24V
The voltage to open	<14.5V
The voltage to close	>14.7V
Minimal current	-1.8mA (negative)
Max current	-6mA (negative)
Isolation mode	Photoelectric isolation

Note: the above parameters are standard values when the voltage of controller IO power supply (E24V port) is 24V.

$\rightarrow \text{Wiring Reference}$



→ Wiring Note:

- The wiring principle of input IN (0-31) is shown in the figure above. The external signal source can be an optocoupler, a key switch or a sensor, etc., all can be connected as long as the requirements on output of electric level can be achieved.
- For the public end, please connect the "EGND" port on the IO power supply to the "COM" terminal of the external input device. If the signal area power supply of the external device and the IO power supply of the controller are in the same power supply system, this connection also can be omitted.

3.4.2. Basic Usage Method

- (1) Please follow the above wiring instructions to wiring correctly.
- (2) After powered on, please select any one interface among the three interfaces ETHERNET, RS232 and RS485 to connect to ZDevelop.
- (3) State values of relative input ports can be read directly through "IN" command, also, it can be read through "ZDevelop/View/In". Please refer to "ZBasic" for details.

3.5. OUT Digital Output

The digital output adopts 4 sets of screw-type pluggable terminals with a spacing of 3.81mm. And digital outputs can be configured as single-ended pulse axis function.

→ Terminal Definition

Teri	minal	Name	Туре	Function 1	Function 2
		EGND	/	IO power ground/IO public end	/
EGND	•	E24V	/	IO power input DC24V	/
E24V		OUT0		Output 0	/
OUT0 OUT1	0	OUT1		Output 1	/
OUT2		OUT2	NPN	Output 2	/
OUT3		OUT3	Leakage,	Output 3	/
OUT4		OUT4	digital	Output 4	/
OUT5 OUT6	0	OUT5	output	Output 5	/
0016 0UT7		OUT6		Output 6	/
		OUT7		Output 7	/
		EGND	/	IO power ground/IO public end	/
EGND	•	NC	/	Spare	/
NC	0	OUT8		Output 8	/
OUT8 OUT9	0	OUT9		Output 9	/
OUT10		OUT10	NPN	Output 10	/
OUT11	•	OUT11	Leakage,	Output 11	/
OUT12	0	OUT12	digital	Output 12	/
OUT13	0	OUT13	output	Output 13	/
OUT14 OUT15	0	OUT14		Output 14	/
00110		OUT15		Output 15	/
		EGND	/	IO power ground/IO public end	/
			,	5V power output generated	,
		E5V	/	from IO power	/
		OUT16	NPN	Output 16	DIR7
		OUT17	Leakage,	Output 17	PUL7
		OUT18	digital	Output 18	DIR6
		OUT19	output	Output 19	PUL6
		•			

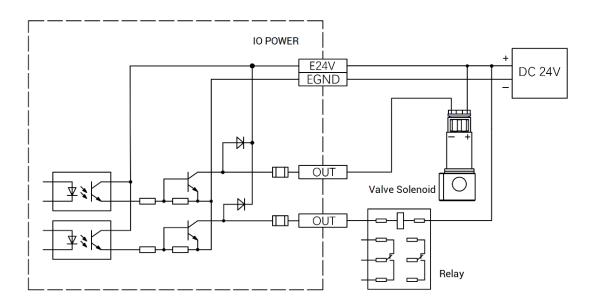
UL5
IR4
UL4
/
,
/
IR3
UL3
IR2
UL2
IR1
UL1
IR0
UL0

Note:

- > Pulse ports can use E5V common anode output or E24V common anode output.
- OUT16-31 can be configured as pulse axis interfaces, when ATYPE=0, they are general outputs.
- The max output current of OUT28-31 is 500mA, the max current of OUT0-27 is 300mA.

3.5.1. Digital Output Specification & Wiring

$\rightarrow \textbf{Specification}$

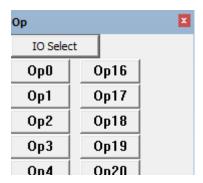

Item	Digital Output (OUT0-31)
Output mode	NPN leakage type, it is 0V when outputs
Frequency	< 8kHz

Voltage level	DC24V	
Max output current	+300mA (the max output current of OUT28-	
	OUT31 is 500mA)	
Max leakage current when off	25μΑ	
Respond time to conduct	12µs	
Respond time to close	80µs	
Overcurrent protection	Support	
Isolation method	Photoelectric isolation	

Note:

- The times in the form are typical based on the resistive load, and may change when the load circuit changes.
- Due to the leak-type output, the shutdown of the output will be obviously affected by the external load circuit, and the output frequency should not be set too high in the application.

→ Wiring Reference


→ Wiring Note:

- The wiring principle of digital output OUT (0-31) is shown in the figure above. The
 external signal receiving end can be an optocoupler or a relay or solenoid valve, all
 can be connected as long as the input current does not exceed 300mA.
- For the connection of the public end, please connect the "EGND" port on the IO power supply to the negative pole of the DC power supply of the external input device. If the

DC power supply of the external device and the controller IO power supply are in the same power supply system, this connection can also be omitted.

3.5.2. Basic Usage Method

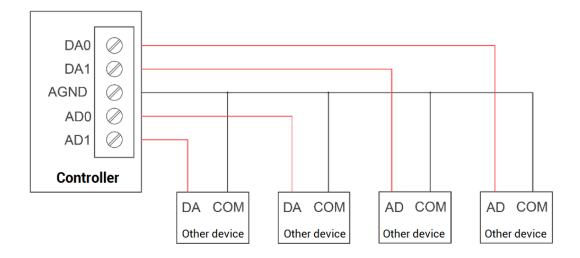
- (1) Please follow the above wiring instructions to wiring correctly.
- (2) After powered on, please use any one interface among the three interfaces ETHERNET, RS232 and RS485 to connect to ZDevelop.
- (3) Open or close output port directly through "OP" command, also, it can be opened or closed through "ZDevelop/View/Op". Please refer to "ZBasic" for details.

3.6. AD/DA Analog Input / Output

The analog port adopts a set of 5Pin screw-type pluggable terminals with a spacing of 3.81mm.

→ Terminal Definition

Terminal		Name	Туре	Function
DA0		DA0	Output	Analog output terminal: AOUT(0)
0	DA1	DA1	Output	Analog output terminal: AOUT(1)
•	AGND AGND Public End AD0 AD1 AD1 Input	AGND	Public End	Analog public end
		Analog input terminal: AIN(0)		
		AD1	Input	Analog input terminal: AIN(1)
Note: VDI C100F internal ADDA uses internal newer				

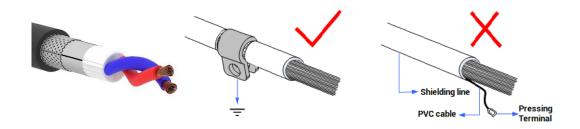

Note: XPLC108E internal ADDA uses internal power.

3.6.1. Analog Input / Output Specification & Wiring

$\rightarrow \textbf{Specification}$

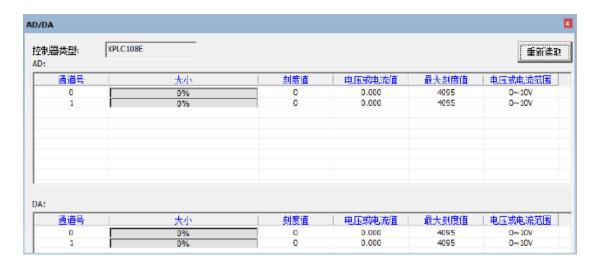
Item	AD (0-1)	DA (0-1)
Resolution	12-bit	12-bit
Data range	0-4095	0-4095
Signal range	0-10V input	0-10V output
Data refresh ratio	1KHz	1KHz
Voltage input impedance /	300KΩ (voltage input	>33KΩ (voltage
output load	impedance)	output load)

→ Wiring Reference

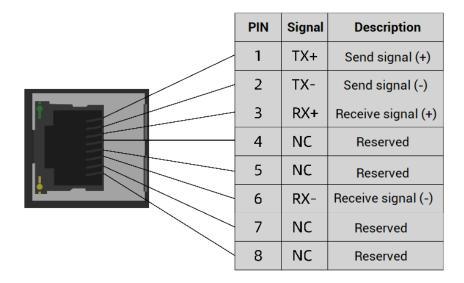


→ Wiring Note:

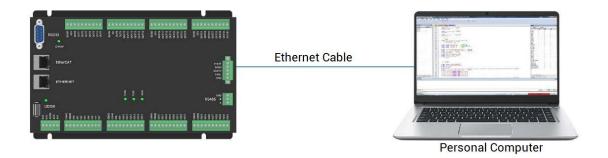
- The analog input/output wiring method is as shown in the figure above, and the external load signal range must match with this signal range.
- Please use STP, especially in bad environments, and make sure the shielding layer is fully grounded.


→ Cable Requirements:

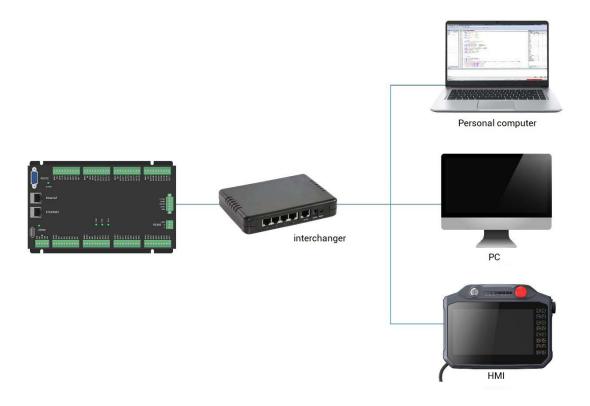
Shielded Twisted Pair, and the shielded cable is grounded.


3.6.2. Basic Usage Method

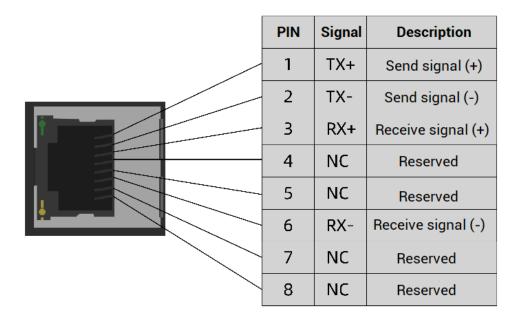
- (1) Please follow the above wiring instructions to wiring correctly.
- (2) After powered on, please use any one interface among the three interfaces ETHERNET, RS232 and RS485 to connect to ZDevelop.
- (3) Analog input voltage can be read through "AIN" command and corresponding analog voltage can be output through "AOUT" command, also, data of each channel can be checked through "ZDevelop/View/AD/DA". Please refer to "ZBasic" for details.



3.7. ETHERNET


XPLC108E motion controller has a 100M network port, and it supports MODBUS_TCP protocol and custom communication, the default IP address is 192.168.0.11. The pin definition is as follows:

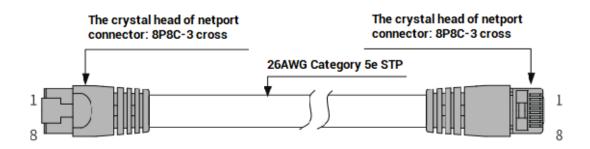
The Ethernet port of the controller can be connected to a computer, HMI, etc. through an Ethernet cable, and using point to point connection method. The schematic diagram is as follows:



The controller can also be connected to the interchanger through an Ethernet cable, and then use interchanger to connect to other devices, then multi-point connection can be achieved. The schematic diagram is as follows:

3.8. EtherCAT Bus Interface

XPLC108E motion controller has a 100M EtherCAT communication interface, and it supports EtherCAT protocol. In addition, EtherCAT driver or EtherCAT expansion module can be connected. The pin definition is as follows:


$\rightarrow \textbf{Specification}$

Item	Specification	
Communication protocol	EtherCAT protocol	
Valid service	CoE(PDO, SDO), FoE	
Synchronization method	IO adopts input and output synchronization / DC-	
	distributed clock	
Physical level	100BASE-TX	
Duplex mode	Full duplex	
Topology	linear topology	
Transfer media	Cable	
Transfer distance	It is less than 100M between 2 nodes	
Process data	Maximum 1486 bytes of one single frame	
Synchronization shaking	1	
of two slave stations	<1us	
Refresh	1000 digital input and output about is 30us	

→ Communication Cable Requirements

Both ETHERNET communication interface and EtherCAT communication interface adopt standard Ethernet RJ45 interface.

The network cable adopts Category 5e STP, and the crystal head has a metal shell to reduce interference and to prevent information from being eavesdropped. As shown below:

Item	Specification
Cable type	Flexible crossover cable, Category 5e
traverse	twisted pair
Line pairs	4
Isolation	cross skeleton

Connector	Crystal head with iron shell
Cable material	PVC
Cable length	Less than 100m

Use RJ45 network cable connection method:

- When installing, hold the crystal head that is with the cable and insert it into the RJ45 interface until it makes a "click" sound (kada).
- In order to ensure the stability of communication, please fix the cables with cable ties.
- When disassembling, press the tail mechanism of the crystal head, and pull out the connector and the module in a horizontal direction.

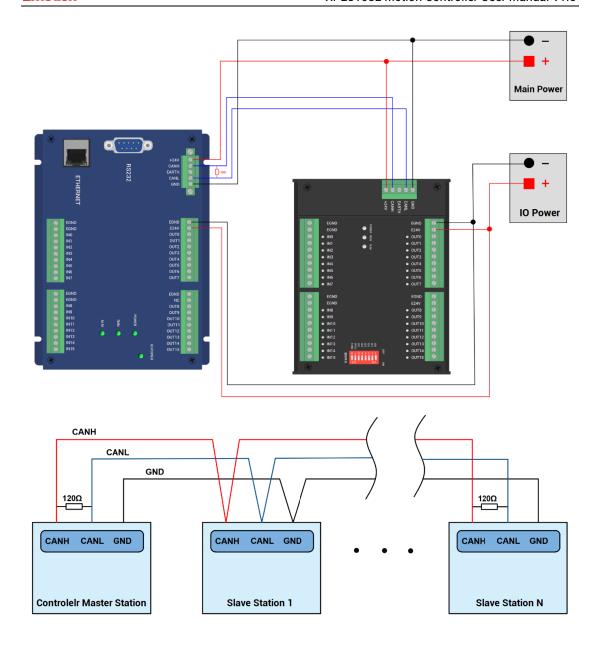
Please use tube-type pre-insulated terminals and cables with appropriate wire diameters to connect the user terminals.

Chapter IV Expansion Module

The controller can expand digital IO, analog IO, pulse axis and other resources through CAN bus (ZIO series expansion modules). For details, please refer to "ZIO Expansion Card Hardware Manual". Also, through EtherCAT bus (EIO series expansion cards) expansion of these resources also can be achieved, please refer to each EIO hardware manual for details.

4.1. CAN Bus Expansion

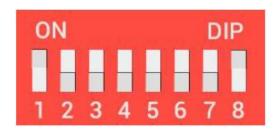
ZIO series expansion modules or ZMIO310-CAN coupler with sub modules can be used.


4.1.1.CAN Bus Expansion Wiring

The IO expansion module is powered by the dual power supply. Except the main power supply, an additional IO power supply is required to supply independent power for IO. Both the main power supply and the IO power supply use 24V DC power supply. For ZAIO, it only needs to connect to the main power supply.

To prevent interference, separate the IO power supply from the main power supply.

Please select the expansion module according to the requirements, and select IO mapping or axis mapping according to the resources of the expansion module.


Wiring reference of connection between ZIO expansion module and control card and standard wiring of CAN bus are shown as below:

→ Wiring Note:

- XPLC108E controller uses the dual power, and ZIO expansion module uses dual-power. When using, main power supply of expansion module and main power supply of controller can share one power. When they use different power supplies, controller power EGND needs to connect to expansion module power GND, otherwise CAN may be burnt out.
- When connecting multiple ZIO expansion modules on the CAN bus, a 120-ohm resistor needs to be connected in parallel between the CANL and CANH terminals, for the ZIO expansion module that is with 8-digit dialing codes, the terminal resistor can be realized by dialing the code (DIP).

4.1.2. CAN Bus Expansion Resource Mapping

The ZCAN expansion module generally has an 8-bit DIP switch, dial ON to take effect, and the meaning of the DIP is as follows:

- 1-4: they are used for ZCAN expansion module IO address mapping, the corresponding value is 0-15.
- 5-6: CAN communication speed, corresponding value is 0-3, four different speeds are optional.
 - 7: reserved.
- 8: 120 ohm resistor, dial ON means a 120 ohm resistor is connected between CANL and CANH.

The IO numbers of the entire control system cannot be repeated, and existed numbers must be avoided when mapping resources. And the DIP switch must be dialed before power-on, if re-dial after power-on, it is invalid. It needs to be powered on again to take effect.

Dial 1-4 to select the CAN address, and the controller sets the IO number range of the corresponding expansion module according to the CAN DIP address. When each is dialed as OFF, the corresponding value is 0, when it is ON, it corresponds to a value of 1, and the address combination value = dial 4×8 + dial code 3×4 + dial code 2×2 + dial code 1.

Dial code 5-6 to select CAN bus communication speed, speed combination value=dial code 6×2 + dial code 5×1 , the combined value range is 0-3.

The corresponding speeds are as follows:

DIP 5-6	CANIO_ADDRESS high 8-bit value	CAN communication speed
Combination value		
0	0 (corresponds to decimal 128)	500KBPS (default value)
1	1 (corresponds to decimal 256)	250KBPS
2	2 (corresponding to decimal 512)	125KBPS
3	3 (corresponding to decimal 768)	1MBPS

The controller side sets the CAN communication speed through the CANIO_ADDRESS

command. There are also four speed parameters that can be selected. The communication speed must be consistent with the communication speed of the expansion module that corresponds to the combination value, then they can communicate with each other.

The factory default communication speed is 500 KBPS on both sides, there is no need to set this, unless you need to change the speed.

The CANIO_ADDRESS command is a system parameter, and it can set the masterslave end of CAN communication. The default value of the controller is 32, that is, CANIO_ADDRESS=32 is the master end, and the slave end is set between 0-31.

The CAN communication configuration can be viewed in the "State the Controller" window.

→ IO Mapping:

the CAN expansion module uses bit1-4 of the DIP switch. According to the number of currently included IO points (the largest number in IN and OP must include IO point in the axis interface), use the bit 1-4 to set the ID, so as to determine the number range of IO to be expanded.

If the controller itself contains 28 INs and 16 OPs, then the starting address set by the first extended board should exceed the maximum value of 28. According to below rule, the dial code should be set to the combination value 1 (binary combination value 0001, from right to left, dial code 1-4, at this time dial 1 is set to ON, and the others are set to OFF), the IO number on the expansion board = the expansion board number value + the initial IO number value, among them, the IOs that are vacant from 29-31 Numbers are not used. Subsequent extended boards continue to confirm the dial settings according to the IO points in turn.

The initial digital IO mapping number starts from 16 and increases in multiples of 16.

The distribution of digital IO numbers corresponding to different dial IDs is as follows:

DIP 1-4 combination value	Starting IO number	Ending IO number
0	16	31
1	32	47
2	48	63
3	64	79
4	80	95
5	96	111
6	112	127

128	143
144	159
160	175
176	191
192	207
208	223
224	239
240	255
256	271
	144 160 176 192 208 224 240

The initial IO mapping number of the analog AD starts from 8 and increases in multiples of 8. The initial IO mapping number of the analog DA starts from 4 and increases in multiples of 4. The allocation of digital IO numbers corresponding to different dial code IDs is as follows:

DIP 1-4	Starting AD	End AD	Starting DA	End DA
combination value	number	number	number	number
0	8	15	4	7
1	16	23	8	11
2	24	31	12	15
3	32	39	16	19
4	40	47	20	23
5	48	55	24	27
6	56	63	28	31
7	64	71	32	35
8	72	79	36	39
9	80	87	40	43
10	88	95	44	47
11	96	103	48	51
12	104	111	52	55
13	112	119	56	59
14	120	127	60	63
15	128	135	64	67

→ Axis Mapping:

When the CAN bus expansion mode is used to expand the pulse axis, ZIO16082M

can be selected to expand two pulse axes. These two pulse axes need to be mapped and bound with the axis No., then access.

Extended axes need to perform axis mapping operations, using the AXIS_ADDRESS command to map, and the mapping rules are as follows:

AXIS_ADDRESS(axis No.)=(32*0)+ID

'the local axis interface of the expansion module AXIS 0

AXIS_ADDRESS(axis No.)=(32*1)+ID

'the local axis interface of the expansion module AXIS 1

The ID is the combined value of the DIP bit1-4 of the expansion module. After the mapping is completed and the axis parameters such as ATYPE are set, the expansion axis can be used.

Example:

ATYPE(6)=0

'set as virtual axis

AXIS_ADDRESS(6)=1+(32*0)

'ZCAN expansion module ID 1 axis 0 is mapped to axis 6

ATYPE(6)=8 'ZCAN extended axis type, pulse direction stepping or servo

UNITS(6)=100 0 'pulse equivalent 1000

SPEED(6)=100 'speed 100uits/s

ACCEL(6)=1000 'acceleration 1000units/s^2

MOVE(100) AXIS(6) 'extended axis movement 100units

Extended resource viewing:

According to the CAN connection, after the power is turned on, and the wiring resistance dial code is set correctly, the power indication led (POWER) and the running indication led (RUN), the IO power indication led (IO POWER) are on, and the alarm indication led (ALM) is off. At the same time, the "Controller" - "State the controller" - "ZCanNodes" in the ZDevelop software displays the expansion module information and the extended IO number range.

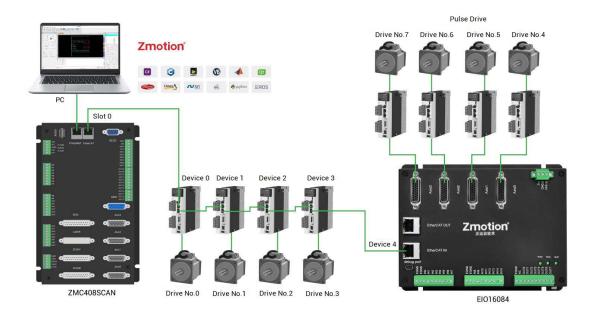
The dial ID and the corresponding resource number when connecting multiple expansion modules are as follows:

Local	432-0(ZMC432)	32	30(0-29)	18(0-17)	0	2(0-1)	
1	48(ZIO 1632)	0	16(32-47)	32(32-63)	0	0	
3	26(ZIO 16082)	2	16(64-79)	8(64-71)	0	0	
4	10(ZAIO0802)	0	0	0	8(40-47)	2(20-21)	

ALMRM indicator light is on, please check whether the wiring, resistor and dial setting are correct, and whether the CANIO_ADDRESS command of the controller is set as the master end (32), and whether the CAN communication speed is consistent.

4.2. EtherCAT Bus Expansion

The EIO expansion modules and ZMIO310-ECAT are expansion modules used by the EtherCAT bus controller. For example, EIO series can expand the resources of digital IO and pulse axis. When the resources of the controller are insufficient, the EtherCAT bus controller can be connected to multiple EIO expansion modules for expansion, you can view the maximum number of IO expansion points and the maximum number of expansion axes of the controller, and in this way, it supports IO remote expansion.


4.2.1. EtherCAT Bus Expansion Wiring

After the expansion wiring is completed, each EIO expansion module does not need to develop again. It only needs to manually configure the unique IO address and axis address in the EtherCAT master controller, and it can be accessed after the configuration is completed.

The IO address number is set through the bus command NODE_IO, and the program on the controller can access the resources on the expansion module only through the IO number. The configuration of the axis address uses the AXIS_ADDRESS command to map axis number, and when the binding is completed, specify the axis number through the BASE or AXIS command.

When wiring, pay attention that EtherCAT IN is connected to the upper-level module, and EtherCAT OUT is connected to the lower-level module. The IN and OUT ports cannot be mixed.

EIO expansion module wiring reference example (take ZMC408SCAN as an example):

Involved number concepts in above figure are as follows: the bus-related command parameters will use the following numbers:

Slot number (slot):

The slot number refers to the number of the bus interface on the controller, and the slot number of the EtherCAT bus is 0.

Device number (node):

The device number refers to the number of all devices connected to a slot. It starts from 0 and is automatically numbered according to the connection sequence of the devices on the bus. You can view the total number of devices connected to the bus through the NODE_COUNT(slot) command.

Drive number:

The controller will automatically identify the drive on the slot, and the number starts from 0, and the number is automatically numbered according to the connection sequence of the drive on the bus.

The drive number is different from the device number. Only the drive device number on the slot is assigned, and other devices are ignored. The drive number will be used when mapping the axis number.

4.2.2. EtherCAT Bus Expansion Resource Mapping

→ IO Mapping:

The program on the controller can access the resources on the expansion module

only through the IO number. The IO number of the EtherCAT bus expansion module is set through the bus command NODE_IO, and the input and output are configured at the same time.

When IO mapping, first check the maximum IO number of the controller itself (including the external IO interface and the interface in the pulse axis), and then use the command to set.

If the extended IO coincides with the IO number of the controller itself, the two will work at the same time, so the mapped number of the IO mapping must not be repeated in the entire control system.

10 mapping syntax:

NODE_IO(slot, node) = iobase

slot: slot number, 0-default

node: device number, starting from 0

iobase: mapping the IO start number, the setting result will only be a multiple of 8

Example:

NODE_IO(0,0)=32 'set the IO start number of slot 0 interface device 0 to 32

If device 0 is EIO16084, after configuration according to the above syntax, the IO numbers corresponding to input INO-15 are 32-47 in turn, the general input port numbers in the axis interface are 48-55, and the drive alarm inputs of axes AXIS 0-3 are 48-51 respectively. The IO numbers corresponding to the output OUTO-7 are 32-39 in sequence, the general output port numbers in the axis interface are 40-47, and the drive enable outputs of the axes AXIS 0-3 are 40-43 respectively.

→ AXIS Mapping:

Before using the axis of the expansion module, you need to use the AXIS_ADDRESS command to map the axis number, and the axis mapping also needs to pay attention to the axis number of the entire system cannot be repeated. The mapping syntax of the EIO series extended axis is the same as that of the bus driver.

Axis mapping syntax:

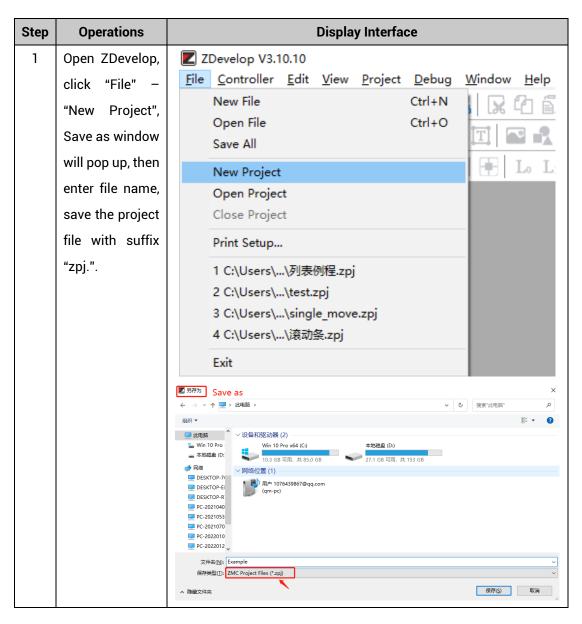
AXIS_ADDRESS(axis number)=(slot number<<16)+driver number+1

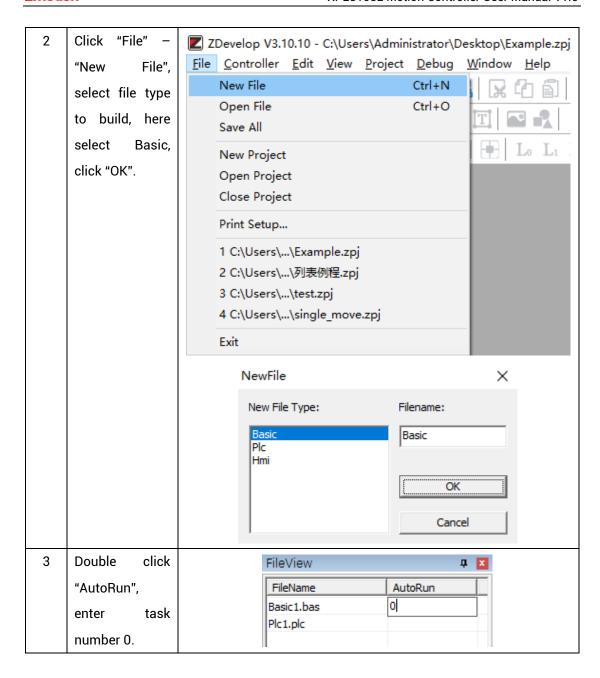
Example:

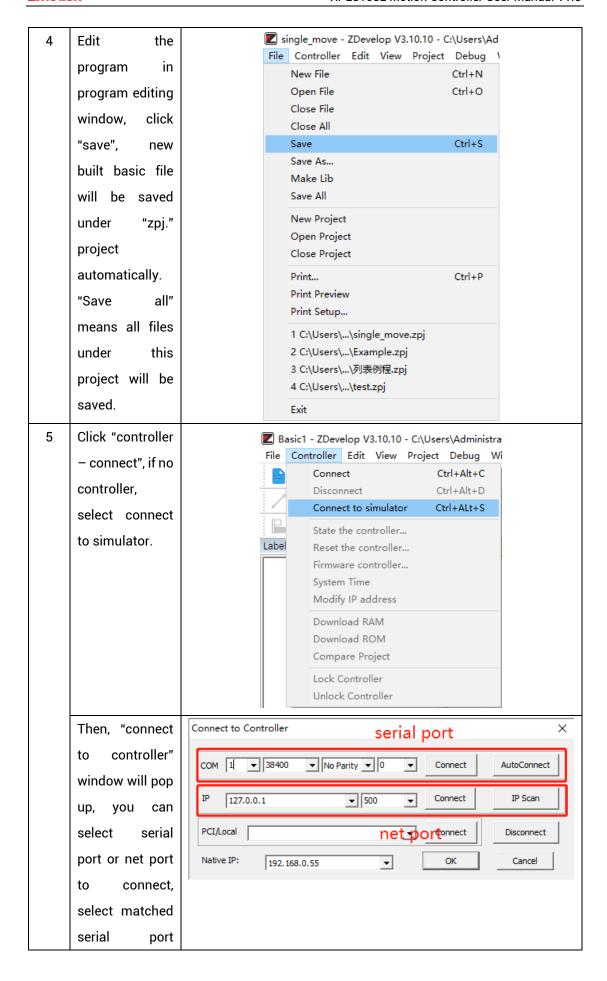
 $AXIS_ADDRESS(0)=(0<<16)+0+1$

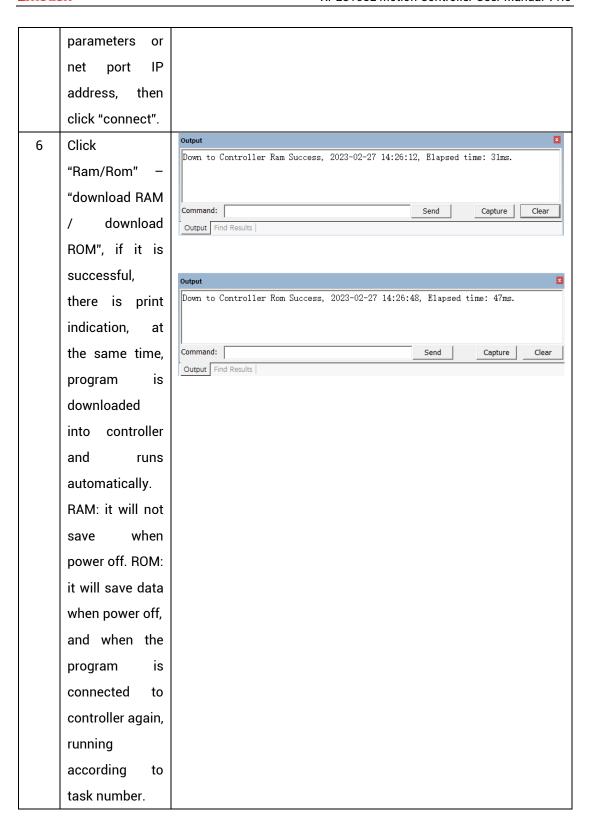
'the first drive on the EtherCAT bus, drive number 0, bound as axis 0 $AXIS_ADDRESS(1)=(0<<16)+1+1$

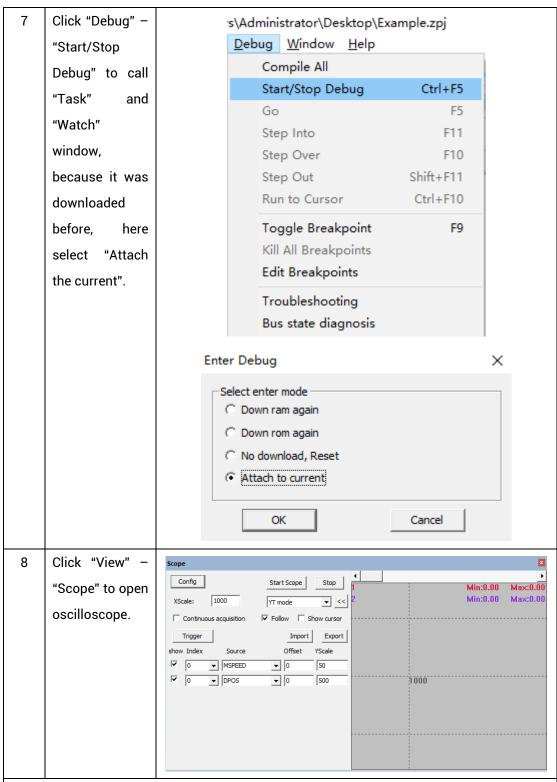
'the second drive on the EtherCAT bus, drive number 1, bound as axis 1


If the first node is EIO16084, and EIO16084 is connected to drive, then driver 0 here is the first pulse driver connected to EIO16084, otherwise it is the EtherCAT driver.


Chapter V Program & Applications


5.1. ZDevelop Software Usage


ZDevelop is a PC-side program development, debugging and diagnostic software for the ZMoiton series motion controllers of Zmotion Technology. Through it, users can easily edit and configure the controller program, quickly develop applications, diagnose system operating parameters in real time, and watch the motion controller. The running program is debugged in real time and supports Chinese and English bilingual environments.


ZBasic, ZPLC and ZHMI can run multi-tasks, and ZBasic can run multi-tasks, and can be mixed with ZPLC and ZHMI.

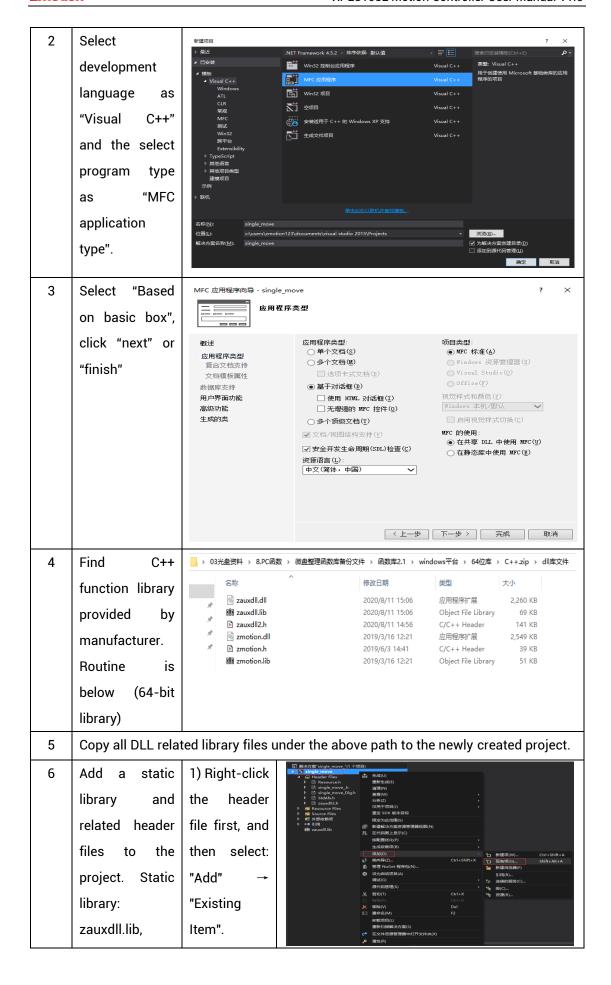
Note:

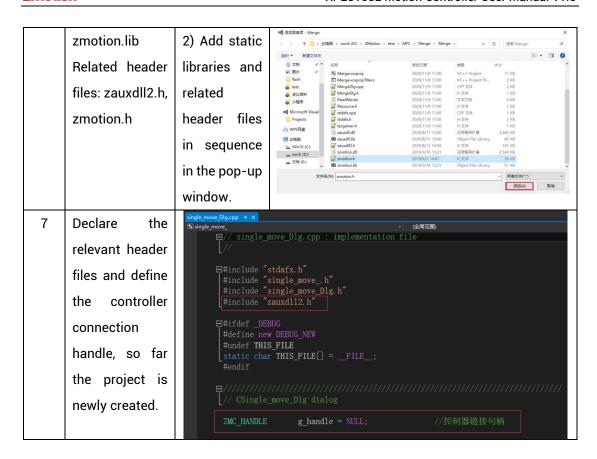
- When opening an project, choose to open the zpj file of the project. If only the Bas file
 is opened, the program cannot be downloaded to the controller.
- When the project is not created, only the Bas file cannot be downloaded to the controller.
- The number 0 in automatic operation represents the task number, and the program

runs with task 0, and the task number has no priority.

 If no task number is set for the files in the entire project, when downloading to the controller, the system prompts the following message WARN: no program set autorun

5.2. PC Upper-Computer Program Application


The controller supports development under various operating systems such as windows, linux, Mac, Android, and wince, and provides dll libraries in various environments such as vc, c#, vb.net, and labview, as shown in the figure below. PC software programming refers to "ZMotion PC Function Library Programming Manual".



The program developed using the PC software cannot be downloaded to the controller, and it is connected to the controller through the dll dynamic library. The dll library needs to be added to the header file and declared during development.

The c++ project development process in VS is as follows:

Step	Operations	Display Interface			
1	Open VS, click	■ 起始页 - Microsoft Visual Studio			
	"File" – "New" –	文件(F) 编辑(E) 视图(V) 调试(D) 团队(M) 工具(T) 体系结构(C) 测试(S) 分析(N) 窗口(W) 新建(N)			
	"Project".	打开(O)			
		☑ 关闭解决方案(T) * 文件(F) Ctrl+N 圖 保存远定项(S) Ctrl+S 从现有代码创建项目(E)			

Chapter VI Run and Maintain

The correct operation and maintenance of the device can not only guarantee and extend the life cycle of the equipment itself, but also take technical management measures according to the pre-specified plan or the corresponding technical conditions to prevent equipment performance degradation or reduce the probability of equipment failure.

6.1. Regular Inspection and Maintenance

The working environment has an impact on the device. Therefore, it is usually inspected regularly based on the inspection cycle of 6 months to 1 year. The inspection cycle of the device can be appropriately adjusted according to the surrounding environment to make it work within the specified standard environment.

Check item	Check content	Inspection standards
power supply	Check whether the voltage is rated	DC 24 V (-10%~10%)
	Whether the ambient temperature is within the specified range (when installed in the cabinet, the temperature inside the cabinet is the ambient temperature)	-10°C - 55°C
surroundings	Whether the ambient humidity is within the specified range (when installed in the cabinet, the humidity in the cabinet is the ambient humidity)	10 %-95% non-condensing
	Is there direct sunlight	No
	With or without droplets of water, oil, chemicals, etc.	No
	Whether there is dust, salt, iron filings, dirt	No
	Whether there is corrosive gas	No
	Whether there are flammable and explosive gases or articles	No

	Whether the device is subjected to vibration or shock	Should be within the range of vibration resistance and impact resistance
	Is the heat dissipation good	Keep good ventilation and heat dissipation
Installation and Wiring Status	Whether the basic unit and the expansion unit are installed firmly	The mounting screws should be tightened without loosening
	Whether the connecting cables of the basic unit and the expansion unit are fully inserted	The connection cable cannot be loosened
	Are the screws of the external wiring loose	Screws should be tightened without loosening
	Whether the cable is damaged, aged, cracked	The cable must not have any abnormal appearance

6.2. Common Problems

Problems		Suggestions
	1.	Check whether the ATYPE of the controller is correct.
	2.	Check whether hardware position limit, software
		position limit, alarm signal work, and whether axis
		states are normal.
	3.	Check whether motor is enabled successfully.
	4.	Confirm whether pulse amount UNITS and speed
Motor does not rotate.		values are suitable. If there is the encoder feedback,
Wiotor does not rotate.		check whether MPOS changes.
	5.	Check whether pulse mode and pulse mode of drive
		are matched.
	6.	Check whether alarm is produced on motion
		controller station or drive station.
	7.	Check whether the wiring is correct.
	8.	Confirm whether controller sends pulses normally.
The position limit signal is	1.	Check whether the limit sensor is working normally,

invalid.		and whether the "input" view can watch the signal
		change of the limit sensor.
	2.	Check whether the mapping of the limit switch is
		correct.
	3.	Check whether the limit sensor is connected to the
		common terminal of the controller.
	1.	Check whether the limit sensor is working normally,
		and whether the "input" view can watch the signal
No signal comes to the		change of the limit sensor.
	2.	Check whether the mapping of the limit switch is
input.		correct.
	3.	Check whether the limit sensor is connected to the
		common terminal of the controller.
	1.	Check whether IO power is needed.
The output does not work.	2.	Check whether the output number matches the ID of
		the IO board.
	1.	Check whether the power of the power supply is
		sufficient. At this time, it is best to supply power to
POWER led is ON, RUN led		the controller alone, and restart the controller after
is OFF.		adjustment.
	2.	Check whether the ALM light flickers regularly
		(hardware problem).
RUN led is ON, ALM led is	1.	Program running error, please check ZDevelop error
ON.		code, and check application program.
	1.	Check whether the serial port parameters are
		modified by the running program, you can check all
		the current serial port configurations
Fail to connect controller		through ?*SETCOM.
to PC through serial port.	2.	Check whether the serial port parameters of the PC
		match the controller.
	3.	Open the device manager and check whether the
		serial driver of the PC is normal.
CAN expansion module	1.	Check the CAN wiring and power supply circuit,
CAN expansion module cannot be connected.		whether the 120 ohm resistor is installed at both
Carmot be connected.		ends.

	2.	Check the master-slave configuration,
		communication speed configuration, etc.
	3.	Check the DIP switch to see if there are multiple
		expansion modules with the same ID.
	4.	Use twisted-pair cables, ground the shielding layer,
		and use dual power supplies for severe interference
		(the main power supply of the expansion module and
		the IO power supply are separately powered)
	1.	Check IP address of PC, it needs to be at the same
		segment with controller IP address.
	2.	Check controller IP address, it can be checked and
		captured after connection through serial port.
	3.	When net port led is off, please check wiring.
	4.	Check whether controller power led POWER and
		running indicator led RUN are ON normally.
	5.	Check whether the cable is good quality, change one
		better cable to try again.
E-7 1	6.	Check whether controller IP conflicts with other
Fail to connect controller		devices.
to PC through net port.	7.	Check whether controller net port channel ETH are all
		occupied by other devices, disconnect to other
		devices, then try again.
	8.	When there are multiple net cards, don't use other net
		cards, or change one computer to connect again.
	9.	Check PC firewall setting.
	10.	Use "Packet Internet Groper" tool (Ping), check
		whether controller can be Ping, if it can't, please
		check physical interface or net cable.
	11.	Check IP address and MAC address through arp-a.